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Jakúbková et al. (2016). PloS One 11: e0164175; Frankovský et al. (2021). Mitochondrion 
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9Mitochondrial Telomeres: Alternative Solutions to the End-Replication Problem

lengthening mechanisms114 (see also Chapter by Reddel). The maintenance of telomeres by
alternative, telomerase-independent mechanisms may be important in certain types of cancer
and in therapeutic treatments. The emergence of such mechanisms may represent a potential
source of resistance of tumor cells toward telomerase inhibitors.75-82 In a recent study describing
t-loops in mammalian telomeres, it was noted that the structure containing an annealed 3'
terminus of the G strand overhang resembles a “stalled replication fork”.64,83 Subsequent studies
have demonstrated the presence of t-loops in Oxytricha and trypanosomes,84,85 suggesting a
general occurrence of these structures at the ends of eukaryotic chromosomes. It is unlikely for
normal telomere maintenance in these species that this structure provides a strategy for self-
primed elongation of telomere sequences, utilizing standard DNA polymerases and helicases.
But it seems possible that this self-priming process is really active in the absence of telomerase,
or in other species or for other types of telomeric repeats.

Studies of S. cerevisiae mutants with defects in telomerase revealed that these cells may
reconstitute chromosomal ends by RAD52-dependent recombination mechanisms.86-90 Recently
it has been demonstrated that telomerase-independent survival is also enhanced in S. cerevisiae
and Kluyveromyces lactis cells with mutations in the mismatch-repair pathway that unblock
recombination between imperfectly matched sequence arrays.91 Additional recombinational
mechanisms have been proposed for mouse cells lacking telomerase.92,93 Schizosaccharomyces
pombe containing mutations in the gene coding for telomerase RNA maintains its telomeres
either by a recombinational RAD52-dependent mechanism or by circularization of its
chromosomes94 and rare survivors of K. lactis with the double mutation ∆ter1 ∆rad52 might
suggest the existence of additional mechanisms.95,96 Finally, in several organisms that include
insects (Chironomus, Anopheles, Drosophila) and plants (Allium), telomerase-independent
strategies of telomere elongation naturally operate as the primary mechanism (reviewed by
Biessmann and Mason;75 see also Chapter by Biessmann, Walter and Mason). Drosophila
melanogaster maintains the ends of its chromosomes by repeated transfer of telomere-associated
retrotransposons.97,98 Recent results have also indicated the involvement of a gene conversion
elongation of broken ends of fruit-fly chromosomes.99 It is possible that these latter mechanisms
may reflect some of the earliest molecular strategies used for the generation and maintenance of
telomeres.

As indicated above, the structural organization of mitochondrial telomeres of C. parapsilosis
mtDNA resembles that of eukaryotic nuclear telomeres,33 and hence similar mechanisms for
their replication and maintenance may be utilized. Studies of the replication of linear mtDNA
of C. parapsilosis by two-dimensional gel electrophoresis led to the observation of a family of
discrete DNA spots on two-dimensional gels which were suspected to consist of telomeric
DNA. In combination with EM analysis, these DNA molecules were characterized and it was
shown that they represent a family of telomeric DNA minicircles which consist of integral
multimers of the 738 bp tandem telomeric repeat unit (Fig. 4).100

Figure 3. Electron microscopic analysis of mtTBP bound to the telomere of linear mtDNA C. parapsilosis
(A) and to M13 ssDNA (B), respectively. Experimental details were described by Tomaska et al.72

Platelet-derived growth factor receptor kinase activity in ras-transformed cells

Table 1 Restoration of PDGF-receptor autophosphorylatlon in ras-trans- Table 3 Inhibition of the membrane-associated PTPase activity by vanadate
formed cells and by PAO
The relative levels of phosphotyrosine were determined from Figure 2 by excising the
corresponding bands from the nitrocellulose filter and counting them in a y counter. A reference
value of 1.00 was assigned to the PDGF-stimulated tyrosine phosphorylation of the PDGF
receptor in ras-transformed cells (line 2, column 4). The last column represents the relative
PDGF-receptor activity of ras-transformed cells, compared with normal NIH 3T3 fibroblasts
under the different conditions shown.

Relative levels of tyrosine phosphorylation

v-Ha-ras

Conditions PDGF NIH 3T3 v-Ha-ras NIH 3T3

Control - 0.25 0.00 -

+ 11.80 1.00 0.08
2 mM Vanadate - 0.05 0.03 -

+ 19.00 4.00 0.21
20,uM PAO - 0.00 0.20 -

+ 5.30 3.00 0.57
2 mM Vanadate - 4.20 0.20 0.05
and 20 #M PAO + 16.00 13.50 0.84

Membranes from normal and from ras-transformed NIH 3T3 fibroblasts were prepared as
described in the Materials and methods section, except that DTT was omitted. PTPase activity
was analysed as described, in the absence or in the presence of 1 mM vanadate, 20 #M PAO
and 1 mM DTT. Abbreviation used: N.D., not determined.

Pi released [pmol min-' (mg of protein)-']

NIH 3T3 v-Ha-ras

Conditions -DTT + DTT -DTT + DTT

Control 10.2 + 1.1 146.2 + 9.6 24.5 + 2.7 353.9 + 40.3
1 mM Vanadate 1.8 + 0.7 15.6 + 2.1 1.9 +1.0 25.0 + 3.9
20,uM PAO 10.3+1.0 N.D. 18.5+2.1 N.D.
1 mM Vanadate 2.3 +0.9 N.D. 1.5 +0.5 N.D.
and 20,uM PAO

(a) (b)
R

Table 2 Comparison of the phosphotyrosine- and phosphoserine-protein-
phosphatase activiftes in fractlons from normal and from ras-transformed
cells
Normal and ras-transformed NIH 3T3 fibroblasts were analysed for phosphotyrosine- and
phosphoserine-protein-phosphatase activities in the membrane and cytosolic fractions, as
described in the Materials and methods section. Abbreviation used: PSPase, phosphoserine
protein phosphatase.

Pi released [pmol -min-1- (mg of protein)-']

Phosphatase NIH 3T3 v-Ha-ras

PTPase
Membranes
Cytosol

PSPase
Membranes
Cytosol

215.4 + 67.2 477.7 + 0.3
268.2 + 20.5 343.6 + 38.8

312.5+27.7 288.2+29.8
1155.2+11.2 1135.4+62.2
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Figure 3 Alternatve models for the suppression of PDGF-receptor
autophosphorylatlon In ras-transformed cells

An inhibitory component (X) is activated by the dephosphorylation of a tyrosine residue by a
PTPase or is inhibited by the phosphorylation of a tyrosine residue (Y-P) by a protein tyrosine
kinase (PTK). The suppression of the PDGF-receptor (R) autophosphorylation would be a result
either of (a) the direct inhibition by X or of (b) the generation of an inhibitory product (Pr) from
its substrate (S).

membrane-associated phosphoserine-phosphatase activity was
similar for both cell lines, the ras-transformed cells exhibited
about a 2.5-fold increase in PTPase activity in crude plasma
membranes, but not in the cytosolic fraction.
The membrane-associated PTPase activity from NIH 3T3 and

from v-Ha-ras-transformed cells was analysed further for its
sensitivity to vanadate and to PAO (Table 3). Since PAO interacts
with vicinal sulphydryl groups, membranes used in these
experiments were isolated without DTT and then were tested in
the absence and in the presence of DTT. Despite a 10-20-fold
reduction in PTPase activity in the absence of DTT, ras-
transformed cells still exhibited a 2.5-fold greater activity than
their normal counterparts. PAO inhibited the PTPase activity in
the membranes from ras-transformed cells by approx. 25 %, but
had no effect on the activity in membranes from normal cells.
This differential effect is similar to the results that are observed
in intact cells (Figure 2). Vanadate reduced the PTPase activity
by approx. 90% in membranes from both cell lines. The
concomitant addition ofboth inhibitors had no additional effect.
Since crude membrane preparations contain a mixture of

PTPases, it is difficult to evaluate their individual or collective
roles in the suppression of the PDGF-receptor activity.
The results presented in this paper suggest that the suppression

of the PDGF-receptor-kinase activity in ras-transformed cells
may occur as a result of an altered PTPase activity. This is
supported by two observations. Firstly, the exposure of ras-
transformed cells to PTPase inhibitors increased the PDGF
receptor autophosphorylation differentially, when compared
with the parental cell line, and secondly, ras-transformed cells
contain elevated levels of PTPase activity. The most obvious
explanation would be the direct dephosphorylation of the re-
ceptor, although this seems less likely since PTPase inhibitors
cannot restore PDGF receptor autophosphorylation in vitro. An
alternative possibility is the presence of an inhibitory component
in ras-transformed cells that is activated by dephosphorylation.
This factor may inhibit the PDGF receptor, either directly
(Figure 3a) or indirectly, by generating an inhibitory product
(Figure 3b). Both mechanisms of PDGF-receptor inhibition
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